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INTERACTION OF A PLANE HARMONIC RAYLEIGH
WAVE WITH A THIN RIGID EDGE INCLUSION
COUPLED WITH AN ELASTIC MEDIUMfY

V. G. POPOV
Odessa
(Received 17 March 1994)

Oscillations of a rigid edge inclusion placed in an elastic half-plane, coupled with an elastic medium and extending onto a surface
perpendicular to it, are¢ considered. The oscillations are induced by a plane harmonic Rayleigh surface wave propagating in the
elastic medium. To solve this problem, the displacement field in the half-plane is expressed as a superposition of the displacements
induced by the propagating Rayleigh wave and two discontinuous solutions of the Lamé equations with jumps at the boundary
of the half-plane and at the line along which the inclusion is situated. The unknown jumps are determined from the boundary
conditions and the corditions of the interaction of the inclusion with the medium. This reduces the problem to the solution of
a system of singular integral equations, with a stationary singularity, for the jumps of the stresses on the line of the inclusion.
The system is solved numerically by mechanical quadratures. The parameters of the motion of the inclusion and the stressed
state of the medium near it are investigated. © 1997 Elsevier Science Ltd. All rights reserved.

1. Consider an elastic half-plane ~ < x < 0,y > 0, whose boundary is stress-free
Oy(x, +0) = 1, (x, +0) =0, —eo<x<oo (1.1)

and which contains a thin rigid inclusion situated in the closed interval x = 0, 0 <y =< h. The stress is
discontinuous across the line on which the inclusion is situated, with jumps

(04) =04+0, y) - 6(-0, y) =, (»)
(1.2)
(try) = T.x_v(+07 »n- T.xy(_os ¥ = %0

A plane harmonic Rayleigh wave [1], propagating along the positive direction of the x axis, produces
displacements in the medium

HrE2
R

up(x,y)=Cexplingx) [exp(—ng,y) - exp(—ngzy):l

(1.3)
vp(x,y)=iC eXP(i"Rx)[é;elgl exp(=%,8,) —Hg CXP(_“zgz)’)]
8=k -8 & =vERk-1 & =2%-1 E=c,/c, & =/ cp

ui\’=2§Rgl/g3’ XR=0)/CR, Kj=0.)/Cj, j=l,2

where ¢;, ¢; and cy, are the velocities of longitudinal, transverse and surface waves, respectively, in the
medium, and o is the oscillation frequency. In view of the linearity, we will henceforth omit the time
factor exp(—iw¢).

We will assume that the inclusion is coupled with the elastic medium. Then the following conditions
must hold on the position line of the inclusion

u(20, y) =08, +vy, uz0,y)=8,, ye [0, k] (14)

where 8; and 3, are the horizontal and vertical displacements and v is the angle through which the
inclusion rotates. The quantities §;, §,, Y may be determined from the equations of motion of the inclusion
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mi, = Fe™™, my,=Fe™™, J&=Me™ (15)

where x, andy, are the displacements of the centre of gravity of the inclusion, € is the angular acceleration,
m is the mass of the inclusion, J, is its moment of inertia about an axis through the centre of gravity,
and F,, F, and M are the forces and moment exerted on the inclusion by the medium, which are defined
by the formulae

F =

X

O ——

h h
X1 (y)dy, Fﬁ(f) X2y, M=| yx,(y)dy (1.6)
0

The displacements in the elastic half-plane are represented as
Uu=u+uy+ ug, v=uU + Uy + Up (1.7)

where u; and v, are solutions of the Lamé equations with jumps (1.2), and u, and v, are solutions of
the Lamé equations at the boundary of the half-plane

[0, =01(x), [T, =0(x), [(v]=03(x), [u]=04x) (1.8)
m =f(x9 +0) _f(x’ _0)
These solutions are given by formulae (2) in [2] and (1.2) in [3].

The jumps ¢;(x) (k = 1, 2, 3, 4) occurring in v, and u, may be determined from conditions (1.1). But
as these conditions are not sufficient to determine all four jumps, we need two additional conditions.
They may be obtained by requiring that

ur(x, =0) = v(x, -0) = 0
It then follows from definition (1.8) of the jumps that

(2] = valx, +0) = 43(x),  [z] = tig(x, +0) = Pa(x) (19)

Substituting u, and v, from [2, 3], taking Fourier transforms with respect tox and applying the convolution
theorem, we obtain

@;(00) = R(©)™ [ %37, (@)@, (@) + (~ic) B0 ), ()]

D4 () = R(0)™' [%37, (@)@, (@) - (~ict) B(o) @, ()] (1.10)
R(o) = (207 - x3)" - 40>y, (@)Y, (@), B(0) =20 =% ~ 27, (@)Y, (e0)

Y=yl -, j=1,2

where @,(a) are the Fourier transforms of the jumps.
Formulae (1.10) yield

["2]= i exp(ia(n—x))(Yu(a)ds(m) (=io)d,; (y,0) \[ ¢;(M) dod
V2] " R(a) (mio)dy (y,0)  Y,(0)d,y(y,0) ) §, (M)

dy(y,00) = (2a? —%d)e M ~ 27,7, d,(y,0)=(2a’ - %) 1 —2y,7,¢7 ", (1.11)

dy (3,00 = (20 —23)e MV —2a%7Y, d,(y,00) = (20 - x3)e T _202e M

We now substitute (1.7) into boundary conditions (1.1). Taking (1.11) into consideration, as well as
the expressions for u; and v; in [2], we obtain the following equalities

I T (cime ™ 1t H i
&y (x) mg({ x,(n)_{n 7@ dy (o, n)dodn - 4m¢§,{ xz(n)_L dy(n, a)e ™™ doudn 112)
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( la)e—lat

I Xz(ﬂ)f

—oo 2(

1k = ;
¢, (x)= -4—“'2“f Xi(M) | dy(a,n)e™ ™ dodn - d,(a.m)dodn
T2 0

- 41t 2
In deriving these formulae we have used the fact that the following conditions hold for (1.11)

G2(x,+0) = ¢y (x), T2 (x,40) = 0,(x)

The final representation of u, and v, in terms of the jumps y;(y) and x2(y) now follows from (1.11)
and (1.12)

vy(x,y)=

TM~

h
(J) x;(MD;; (M, y, x)dn

(1.13)
L) (x, }’) =

T M

h
g X, (M)D,; (M, y, x)dn

where

3 e—io.x
j ——Fy(o,ny)do, k=12 j=12

Dk](n’y!x) R( )

and the functions Fy(o, 1, y) are expressed in terms of d,,(a, y) and dp(0, M) (m = 1, 2, 3, 4).

2. Formulae (1.7) and (1.3) enable us to express the displacement and stress field and in the elastic
half-plane in terms of the unknown jumps of the stresses at the inclusion. To determine them, we will
use conditions (1.4), after first differentiating them in order to eliminate the unknown constants §, and
8,. Conditions (1.4) then become

a—u(+0 =7, a—u(iO,y)=0, y€[0,h] 21
dy dy

These equalities will be equivalent to (1.4) if we add the further conditions
u(10,0) = 8, w0, 0) =3, (22)

Substituting (1.7) into (2.1) and (2.2), we obtain a system of integral equations for the unknown jumps
in the stresses at the inclusion

1
[ @;(Dlsj(t-n+K(t,0)ldt=p;(1), te[0,1]
0

| 2.3)
J @;(sp;(D)+K;(1,00)dt =8 - py;, Jj=12
0
where we have used the following notation
t=h"ln, t=hTy, 0 (V=pTy;(h), 8, =hT'd;, j=12, xy=xh
The kernels of the integral operators in (2.3) are as follows:
So;(T—1t j L;(BYexp(ifro(t-1))dB, L;(B)= A (A, - -B%)
sj(‘c—t)=a%-s0j(‘t—t), j=12 A =yB*-E% A, =p2 -1
24
K’Oj(t,t)_ j W;B,t,0dB, K;(, t)- Koj('c t) 24)

W B, 7.0 = R(B) " A;BT.0)
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A (BT, 1) = %3 Fy (%oB, AT, ht),  Ay(BaT,1) = %35° Fyy (%, B, T, hit)
R.(B) = %5*R0uP) = (287 - 1)° - 4B*A,1,

The right-hand sides of (2.3) are defined as follows:

dug
pl(t)—-'Y+a—(O ,ht), pz(t)— LR (o ht), por =h"'ug(0,0), py, =hvg(0,0)

Let us investigate the properties of the functions defined in (2.4). We first consider the functions s
and s;. In view of the asymptotic expansion

1+E%) o
L®)=- 52 0, po

it follows from the integral representation in (2.4) that

é A8 iz + 022 )

2 2.5)
+8;(2), 51;(2)=0(zInfz)), z—>0

soj(Z)-_-—

I+
s ()=~
;(2) P

Now consider the functions Kj(t, ¢). In the integral of (2.4) representing these functions, we introduce
attenuation in the medium and change to contour integration in the complex plane of f = ¢ + i{ (see
[1]). We then pass to the limit of a medium without attenuation and obtain

™M

1 A (EgTt) 2 A:(B.1.0) )
K,; =—dopid L 4B, =12
0,(T:1) 411:{ T REn & 1£ %) B} J

Cut the plane along a curve L; from the point B = &, consisting of the segment of the real axis 0 < ¢

< £ and the positive imaginary axis { > 0. Make a further cut L, from the point B = 1, consisting of

the segment of the real axis 0 < ¢ < 1 and the positive imaginary axis { > 0. These cuts are defined

by the choice of a single-valued branch of the functions A;(B) in accordance with (1.12).
Transforming the integrals along the cuts, we obtain

A g t0)

Kj(t,z)=i———R;(§R) +Klj(‘t,t)+isz(‘t,t)+iK3j(T,t)
xg = Vi((,1,0) %985 Vy(0,1,1)
Ki(t,n=—0] =22 gr g (11)=—-0f 22051
5 (©0 2n{) R,(0) & Ky 21:({ Ry(0) do (26)

Ky(t.)=—=2] BT And il

, -9
i " Roo) do, Aj(ﬁ,’t,t)—atAj(B,’t,t)

RyB)=(A3)* +16B*(XM]A3)%, Ry(B) =(A3)* - 4B°A1A;
Ry(B)=(A%) — 421N, A5 =287 1

=g £p?, A5 =v14p7

The functions Vi(B, 1, £), (k = 1, 2, 3;j = 1, 2) are expressed in terms of their values at the edges of
the cuts, A%(B, 7, t).
It can be shown that the first and last terms in (2.6) are bounded as 1, f — 0, and that Ky(t,7) = O(t

+ 1)).
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Let us investigate the behaviour as 7, f — 0 of the function Ki(7, ¢). The integrand in (2.6) that defines
Kyj(%, £) admits of the following asymptotic expansion as 7, — 0, { —
Vl J (C’ T, t )
Ry(©)

3
Vo (G1.0) = 2% Eo B (t,0)5% ¥ sin(Cxp (T +1) + %kn) Q@7

=V, ¢, t.0H+0E?)

By, (1,8) = By (T,£) = %3 (1 - E2 )1t

By (1,0)= = B %o[(B-EX )T+ (1= EX )]+ O((T+1)%)

B (t,0)=- Y%y [20 -E) 1+ (E* — )T+ D]+ O((T+1)?)
B, =(1-E2)+0((t+1)), By, =E*+0((T+1))

B3 =B3=0((t + 1))

It follows from (2.7) that the integrals defining K7, ¢) are divergent. To give them a definite meaning,
we transform them as follows:

K=K (t.0+K (1.0
K10 =227 v, (G0t (28)
21 o

=0T [ G
Ky en) 21:({[ R iGTOHE

The functions Kg-(t, t) are given by divergent integrals whose values may be defined using the theory
of generalized functions [4]. Doing so, we deduce from (2.7) and (2.8) that

2 4
21K0 (1, _(-8t(r-1) (1+&" _ .
7Ky, (T,1) Tty + 2(1_52)(1+I)+0((1+t)), j=12 2.9)
In view of (2.5) and (2.9), the integral equation (2.3) may be written in the form

e ALl Bj(t’t)]‘h:fi(t) (210)

! 1
!) wj(‘t)[t-l +‘t+t (t+1)

where

fi(0= —i-}gz—pj(t), hi(z)=O0Gzlnlz]), z—0

2
Bj(t.)=0(l), 1150, a=-tO=4V 2
2(3-4v) 3-4v

(v is Poisson’s ratio).

Equation (2.10) is a singular integral equation with a stationary singularity. It has been proved [5]
that this equation is Noetherian in the class L(I), I = [0, 1] and of index one. If f; = 0, the equation
has only one linearly independent solution

0;(1)=1"+a;(1-1) 2 +@y;(1), j=12 (2.11)

where @y(t) is bounded for T € [0, 1], and a (-1 < a < 0) is a root of the transcendental
equation
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cosmou—a+b(l+a)2=0

In particular, if v = 0.25 then o = -0.22525.
In accordance with (2.11), we look for an approximate solution of (2.3) as

©,(0)=11-1)y,(1) (212)

To determine an approximation for (1), after replacing the integrals in (2.3) by suitable quadrature
formulae [6, 7], we obtain a system of hnear algebraic equations

3 weWls (T —1,) + K (T 1)1 = pjyy, m=12,..,n-1 (2.13)
k=1

=

2wV lso; (Te)+ Koj (14,001 =8g; — poj» j=1.2

where we have used the followm/; notation: \v,k = VYj(%)s Pim = Pi(tm)> & = (1 —x;)/2, x are the roots
of the Jacobi polynomials P,% Y(x), t,, = (1 - z,,,) , Zy are the roots of the Jacobi functions of the
second kind

Gn(Z)—I (IL)x(l—th__ a'_%(x)dx

= 29%124, and 4; are the coefficients of the Gauss-Jacobi quadrature formula [7] with weight
functlon 1-x)*1 +x)'2,
To determine the unknown constants ¥, 8¢ (j = 1,2) in (2.3) which describe the motion of the inclusion
interacting with the wave, we replace the integrals in (1.6) by suitable quadrature formulae and then
deduce the following three equalities from (1.5) and (1.6)

801"'1:_ 2

) Z WiV, Y=——3— X WLV, (214)
7‘0 k=1 i

HoMy k=
m

2 WiWa, My =—5
"o”‘o k=1 ph

dpp =~

After solving system (2.13) together with (2.14), we can approximate the functions y;(t) by inter-
polation polynomials

(2.15)

a,-Y
| P (1-27)
v(1)=0,,(D=-=3% V¥; ‘ o
! ! 2 =1 d (t—tk)[l’na"%(l-—Z'tk)

Using (2.15), we can determine the contact stresses in the contact zone of the inclusion and the medium

D 0, Wl (0.0 =+ 220

plo, (20,h1) = £ =1q,()

By (2.12) and (2.15), we obtain

g; () =K A-1"Q, (1), j=1.2 (2.16)
The stressed state of the medium near the' immersed end of the inclusion is characterized by the
following stress intensity factors [8, 9]

) VA )V
K,= lim (;-1) 6,(0,), K= lim (;—1) 1,(0,)

yv—h+0 y—h+0

Evaluating the limits, we find that
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Kj=pky;, j=12, ky =5Q2n(1)’ ko2 =7Q1,.(1) (2.17)

where Q;,(1) are calculated from (2.15).

The approximate solution obtained here as used in a computation for the following data: v = 0.25,
my = 1, ¢y = c/h = 1. To obtain system (2.13), the quadrature formulae were used with up to 25 grid
points, which was sufficient to obtain results with a relative error of less than 1%. The results of the
numerical test are shown in Figs 1-4.

Figure 1 shows graphs against the parameter x,, of the quantities | 8y; |, | 8gz |, | Y, which describe the
motion of the inclusion in the elastic medium. It can be seen that as xj increases the amplitude of the
horizontal oscillations, | 8; |, first increases, reaches a maximum value at xy = 1.3 and then begins to
decrease, through a sequence of minimum and maximum points. The quantity | y | behaves similarly.
Not so the amplitude | 8, | of the vertical oscillations. At first it decreases slowly, but then it has a sharp
maximum at xp = ().5, subsequently behaving in a rather complicated manner, with a succession of
maxima and minima.

Figure 2 shows the absolute values of the stress intensity factors | kg [, | ko, | defined by (2.17) plotted
against xy. These plots also show several maxima at certain frequency values.

Figures 3 and 4 show the distribution of the absolute values of the contact stresses, | g1(f) | and | go(t) |,
along the inclusion. Curves 1-3 correspond toxy = 0.5, 1 and 2. It is clear that the distribution of contact
stresses depends essentially on the frequency of the propagating wave.
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